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Abstract

In this paper we explore the use of hyperspectral reflectance measurements and veg-
etation indices (VIs) derived therefrom in estimating carbon dioxide (CO2) fluxes (net
ecosystem exchange – NEE; gross primary production – GPP), and some key ecophys-
iological variables related to NEE and GPP (light use efficiency – ε; initial quantum yield5

– α; and GPP at saturating light – GPPmax) for grasslands. Hyperspectral reflectance
data (400–1000 nm), CO2 fluxes and biophysical parameters were measured at three
grassland sites located in European mountain regions. The relationships between CO2
fluxes, ecophysiological variables and VIs derived using all two-band combinations of
wavelengths available from the whole hyperspectral data space were analysed. We10

found that hyperspectral VIs generally explained a large fraction of the variability in
the investigated dependent variables and that they generally exhibited more skill in
estimating midday and daily average GPP and NEE, as well as GPPmax, than α and
ε. Relationships between VIs and CO2 fluxes and ecophysiological parameters were
site-specific, likely due to differences in soils, vegetation parameters and environmen-15

tal conditions. Chlorophyll and water content related VIs (e.g. CI, NPCI, WI), reflecting
seasonal changes in biophysical parameters controlling the photosynthesis process,
explained the largest fraction of variability in most of the dependent variables. A limita-
tion of the hyperspectral sensors is that their cost is still high and the use laborious. At
the eddy covariance with a limited budget and without technical support, we suggest to20

use at least dual or four channels low cost sensors in the the following spectral regions:
400–420 nm; 500–530 nm; 750–770 nm; 780–800 nm and 880–900 nm. In addition, our
findings have major implications for up-scaling terrestrial CO2 fluxes to larger regions
and for remote and proximal sensing sampling and analysis strategies and call for more
cross-site synthesis studies linking ground-based spectral reflectance with ecosystem-25

scale CO2 fluxes.
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1 Introduction

Covering roughly 22 % (80 million ha) of the EU-25 land area, grasslands are among
the dominating ecosystem types in Europe (EEA, 2005) and their role in the European
carbon balance has received a lot of scientific interest lately (Soussana et al., 2007;
Gilmanov et al., 2007; Wohlfahrt et al., 2008; Ciais et al., 2010). While direct mea-5

surements of the carbon dioxide (CO2) exchange, typically made by eddy covariance
techniques (Aubinet et al., 2012), have been carried out and are still ongoing at a num-
ber of different grassland sites in Europe – notably in the two EU projects GreenGrass
(Soussana et al., 2007) and CarboMont (Cernusca et al., 2008) – scaling up these plot-
level measurements to the continental scale requires a modelling approach, typically10

based on or supported by remotely sensed data.
In recent years, SpecNet (http://specnet.info; Gamon et al., 2006), the European

COST Action ES0903 (EUROSPEC) (http://cost-es0903.fem-environment.eu/) and
the COST Action ES1309 (OPTIMISE; http://www.cost.eu/domains_actions/essem/
Actions/ES1309) focused on the use of optical measurement systems as a scale-15

appropriate means for upscaling plot-scale, and in particular eddy covariance CO2 flux
measurements (Gamon et al., 2010).

Optical remote sensing data are typically cast into the form of so-called vegetation
indices (VIs), which make use of the information content of reflected radiation in two or
more discrete wavebands and can be, more or less empirically, related to the process20

of interest.
The typical optical sampling approach, which is linking spectral observations with

carbon fluxes, is based on the Monteith equation (1972, 1977):

GPP = ε×PAR× fAPAR (1)
25

where ε (light use efficiency; LUE) and fAPAR (fraction of absorbed photosynthetically
active radiation) can be retrieved by remote optical observations.

A wide number of VIs that can potentially be used to model grassland productivity
(as a proxy of LUE and fAPAR) has been proposed (Gianelle et al., 2009; Wohlfahrt
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et al., 2010; Rossini et al., 2012). The various VIs differ in their sensitivity to changes
in photosynthetic status. “Greeness indices” – such the widely used Normalized Differ-
ence Vegetation Index (NDVI) – demonstrated to be a good proxy for fAPAR, but are not
sensitive to rapid changes in plant photosynthesis which are induced by common en-
vironmental and anthropogenic stressors (Gitelson et al., 2008; Hmimina et al., 2014;5

Soudani et al., 2014). Such indices have no direct link to photosynthetic efficiency and
are rather indicators for the amount of green biomass and thus for canopy structure
rather than plant functioning (Gamon et al., 1992; Peñuelas et al., 1995; Hmimina et al.,
2014). However, in ecosystems characterized by strong dynamics (e.g. grasslands and
crops with a strong green-up and senescence), other VIs are able to effectively monitor10

seasonal changes in biophysical parameters controlling canopy photosynthesis such
as fAPAR and chlorophyll content and, consequently, can be adopted to monitor sea-
sonal and spatial variability of carbon fluxes (Gitelson et al., 2012; Sakowska et al.,
2014).

Short-term changes in LUE can be remotely detected through a spectral proxy of the15

xanthophyll cycle (Photochemical Reflectance Index, PRI; Gamon et al., 1992). The
PRI is one of the most promising VIs for a direct estimation of photosynthetic light use
efficiency (LUE) and of its seasonal and diurnal variations (Nichol et al., 2002). Latest
developments of the sun-induced fluorescence method may allow even more direct
remote sensing of plant photosynthesis in the near future (Meroni et al., 2009; Rossini20

et al., 2010; Frankenberg et al., 2011). At canopy scale, the relationship between PRI
and LUE was shown to be site dependent (Garbulsky et al., 2011; Goerner et al., 2011)
and strongly affected by environmental conditions (Soudani et al., 2014).

Although the ability to model grassland gross photosynthesis (GPP) based on re-
mote sensing data has increased considerably in the recent years (Gianelle et al.,25

2009; Wohlfahrt et al., 2010; Rossini et al., 2012; Sakowska et al., 2014), a universal
model for GPP estimation applicable across different grasslands and a wide range of
environmental conditions has not yet been identified. For instance, Rossini et al. (2012)
showed PRI to be a powerful VI in predicting LUE, but this relationship may not always
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be observed (Gamon et al., 2001; Filella et al., 2004; Rahimzadeh-Bajgiran et al., 2012;
Gitelson et al., 2012; Sakowska et al., 2014). Indeed, previous studies usually focussed
on single sites with specific characteristics (e.g. climate, vegetation composition, soil
type; see Wohlfahrt et al., 2010) and were often based on the use of different sen-
sors, platforms and protocols (Balzarolo et al., 2011), making generalisation difficult. In5

addition, most of the studies have either relied on reflectance measurements in a few
spectral wavebands (e.g. Wohlfahrt et al., 2010 and Sakowska et al., 2014) or a mini-
mum number of bands needed to calculate the most common VIs, missing potentially
important information in under-sampled spectral regions that could explain GPP fluxes
and variability.10

The overarching objective of the present paper is thus to develop a common frame-
work for predicting grassland GPP based on optical remote sensing data. To this end
we combine eddy covariance CO2 flux measurements with ground-based hyperspec-
tral reflectance measurements at three mountain grassland sites in the Austrian and
Italian Alps and the Italian Apennines.15

2 Materials and methods

2.1 Experimental site description

This study was carried out at three experimental mountain grassland sites in Europe
describing different climatic and grassland management range existing in mountain
regions of Europe (Table 1).20

2.1.1 Amplero

The Amplero site is situated in the Mediterranean Appennine mountains region of Italy
(41.90409◦ N, 13.60516◦ E) at 884 m a.s.l. This site is characterized by mild, rainy win-
ters and by an intense drought in summer. Amplero is managed as a hay meadow with
one cut in late June and extensive grazing during summer and autumn.25
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2.1.2 Monte Bondone

Monte Bondone site is situated in the Italian Alps (46.01468◦ N, 11.04583◦ E) at
1550 m a.s.l. This site is characterized by a typical sub-continental climate with mild
summers and precipitation peaks in spring and autumn. Monte Bondone is managed
as an extensive meadow with one cut in mid-July.5

2.1.3 Neustift

Neustift grassland site is located in the Austrian Alps (47.11620◦ N, 11.32034◦ E) at
970 m a.s.l. The climate of this area is continental/Alpine, with precipitation peaks dur-
ing the summer (July). This site is intensively managed as a hay meadow with three
cuts in mid-June, beginning of August and at the end of September.10

2.2 Hyperspectral reflectance measurements

As described in Vescovo et al. (2012), canopy hyperspectral reflectance measure-
ments were collected at each site under clear sky conditions around midday (from
10:00 to 14:00 LT) using the same model of a portable spectroradiometer (ASD Hand-
Held, Inc., Boulder, CO, USA) at all sites. The spectroradiometer acquires reflectance15

values between 350 and 1075 nm with a Full Width Half Maximum (FWHM) of 3.5 nm
and a spectral resolution of 1 nm. A cosine diffuser foreoptic was used for nadir/zenith
measurements. The vegetation irradiance (sensor pointing nadir) and sky irradiance
(sensor pointing zenith) were measured by placing the spectroradiometer on a tripod
at a height of 1.5 m and by rotating the spectoradiometer alternately to acquire spectra20

from the vegetation and from the sky. Hemispherical reflectance was derived as the
ratio of reflected to incident radiance. Each reflectance spectrum was automatically
calculated and stored by the spectroradiometer as an average of 20 readings. Be-
fore starting each spectral sampling, a dark current measurement was done. Spectral
measurements were collected from spring until the cutting date at Amplero and Monte25

10328

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10323/2014/bgd-11-10323-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10323/2014/bgd-11-10323-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10323–10363, 2014

Relationship between
hyperspectral

reflectance and CO2

exchange

M. Balzarolo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Bondone, while at the site in Neustift, which is cut three times during the season, spec-
tral measurements were taken about once per week throughout the growing season of
2006.

2.3 CO2 flux measurements

Continuous measurements of the net ecosystem CO2 exchange (NEE) were made by5

eddy covariance (EC) technique (Baldocchi et al., 1996; Aubinet et al., 2012) at the
three sites. In this study we used CO2 flux data of the years 2005 and 2006 for Monte
Bondone and of 2006 for the other sites. Fluxes were calculated starting from high
frequency measurements following established protocols (Aubinet et al., 2012). Data
gaps due to sensors malfunctioning or violation of the assumptions underlying the EC10

method were removed and filled using the gap-filling and flux-partitioning techniques
as proposed in Wohlfahrt et al. (2008). Ecosystem respiration (Reco) was calculated
from the y-intercept of the light response model (see Eq. 4). Gross primary productiv-
ity (GPP) was calculated as the difference between NEE and Reco. Half-hourly NEE
and GPP values were averaged around midday (10:00–14:00 LT), to allow for direct15

comparison with the hyperspectral data, and daily sums were also computed.

2.4 Estimation of grassland ecophysiological parameters

Canopy light use efficiency (ε) was derived from photosynthetically active radiation
(PAR) absorbed by the canopy (APAR) as:

ε =
GPP
APAR

=
GPP

PAR× fAPAR
(2)20

and it was estimated both at midday and daily time resolution. We estimated the fraction
of PAR absorbed by the canopy (fAPAR) from measured values of the leaf area index
(LAI) using the Lambert–Beer law:

fAPAR = 0.95
(

1−e(−k LAI)
)

(3)25
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where k is the canopy extinction coefficient (fixed at k = 0.4; Kiniry et al., 2007) and
0.95 is the proportion of intercepted PAR that is absorbed by plants (Schwalm et al.,
2006). LAI was quantified non-destructively by an indirect method based on canopy
PAR transmission using line PAR sensors (SunScan, Delta-T, UK) and inversion of
a radiative transfer model (Wohlfahrt et al., 2001). These measurements were done5

within the footprint area of the spectroradiometer simultaneously with the hyperspectral
measurements.

Three additional key parameters of the response of NEE to PAR were extracted by
fitting measured NEE and PAR to a simple Michaelis–Menten-type model:

NEE =
−αPARFsat

αPAR+ Fsat
+Reco (4)10

where α represents the apparent quantum yield (µmol CO2 µmol photons−1), Fsat the
asymptotic value of GPP (µmol CO2 m−2 s−1), PAR the photosynthetically active radi-
ation (µmol photons m−2 s−1) and Reco the ecosystem respiration (µmol CO2 m−2 s−1).
Using the Levenberg–Marquardt algorithm the parameters of Eq. (4) were estimated15

by fitting Eq. (4) to the data, which were pooled into 3 day blocks centered on the date
of the hyperspectral data acquisition. For each acquisition date, we then used Eq. (3)
to derive GPP at an incident PAR of 1500 µmol m−2 s−1, referred to as GPPmax in the
following.

2.5 Hyperspectral data analysis20

In order to explore the information content of the hyperspectral data for estimating
CO2 fluxes (i.e. midday/daily average of NEE and GPP) and ecophysiological param-
eters (i.e. α, ε and GPPmax), we performed a correlation analysis between spectral
reflectance indices (independent variables) and these (dependent) variables. To this
end, we derived spectral ratio (SR; Eq. 5), spectral difference (SD; Eq. 6) and normal-25

ized spectral difference (NSD; Eq. 6) indices using all possible two-band (i and j ) re-
flectance (ρ) combinations between 400 and 1000 nm (180 600 combinations). These
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three formulations were selected since they represent the most common equations
used to compute vegetation indices (see Table 2).

SRi ,j =
ρi

ρj
(5)

SDi ,j = ρi −ρj (6)

NSDi ,j =
ρi −ρj

ρi +ρj
(7)5

Linear and exponential regression analyses were performed among all possible
wavelength-combinations for all three index-types (SR, NSD and SD) and the inves-
tigated dependent variables.

The performances of linear and exponential models in predicting dependent vari-10

ables (i.e. carbon fluxes and ecophysiological parameters) were evaluated by coeffi-
cients of determination (R2) and root mean square error (RMSE):

R2 =


N∑
i=1

(
Pi − P

)(
Oi −O

)
√

N∑
i=1

(
Pi − P

)2 N∑
i=1

(
Oi −O

)2


2

(8)

RMSE =

√√√√ 1
N

N∑
i=1

(Pi −Oi )
2 (9)

15

where Oi is midday/daily averaged measured fluxes and Pi the midday/daily simulated
fluxes; O and P denote the respective means.

The coefficients of determination (R2) resulting from the linear and exponential mod-
els were visualized in correlograms as depicted in an exemplary fashion in Fig. 1. For
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clarity we have decided to show in the text only the highest 10 % of the R2 values with
a p value smaller than 0.05 and mask all other values and added a symbol (asterisk)
indicating the two-band combination with the highest R2 value to each correlogram
(Fig. 1). The unmasked correlograms are shown in the Supplement for reference.

We also calculated four SR- and seven NSD-indices which are commonly used in5

relation to vegetation activity and CO2 fluxes (Table 2). Figure 1 shows also the location
of these indices in the waveband space of the correlograms. In this analysis, we also
considered the Enhanced Vegetation Index (EVI), which is one of the most frequently
used vegetation index to predict CO2 fluxes. In the Fig. 1 the location of EVI is not
shown since this index is computed by the combination of three spectral bands as10

shown in Table 2.
To select the most appropriate model (i.e. linear or exponential) for predicting grass-

land CO2 fluxes and ecophysiological parameters the Akaike information criterion (AIC,
Akaike, 1973) was used:

AIC = n log(Res)+2p (10)15

where n is the number of observations, p is the number of fitted parameters plus one,
and Res is the residual sum of squares divided by n. The model with the lowest AIC
represents the best model.

3 Results20

3.1 Seasonal variation of meteorological variables, LAI and CO2 fluxes

Environmental conditions and the seasonal development of LAI, NEE, GPP, α, ε and
GPPmax during the study period are shown in Fig. 2. A strong influence of the typical
climatic conditions at the three study sites is evident: Amplero was characterized by
a Mediterranean climate, with highest incoming radiation and temperatures, and the25

lowest amount of precipitation which translated into a substantial seasonal drawdown
10332
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of soil moisture; Monte Bondone and Neustift, more influenced by continental Alpine
climate, experienced comparably lower temperatures with higher precipitation and soil
moisture with respect to Amplero (Fig. 2).

Maximum LAI values were similar at Monte Bondone and Amplero (2.8–3.4 m2 m−2),
while, twice as much leaf area developed at the more intensively managed study site5

Neustift, which was also characterized by higher NEE and GPP (i.e. more photosyn-
thesis and net uptake of CO2). The reductions in leaf area associated with the cuts
of the grasslands were associated as expected with marked increases and reductions
in NEE and GPP, respectively. The canopy light use efficiency, ε, was inversely re-
lated to GPP and LAI, peaking at the beginning of the season at Amplero and Monte10

Bondone (0.002–0.020 µmol photons µmol CO−1
2 ), while for Neustift ε showed the high-

est values after the cuts (0.015–0.020 µmol photons µmol CO−1
2 ). At Amplero, α and

GPPmax peaked in spring and then decreased during the summer drought period, while
at Neustift and Monte Bondone, temporal patterns of α and GPPmax were more strongly
affected by management.15

3.2 Hyperspectral data and their relation to CO2 fluxes and ecophysiological
parameters

Figure 3 reports key spectral signatures of the grasslands collected during the study
period. The reflectances in the NIR region decreased (NIR; 700–1000 nm) and in-
creased in the blue region (420–540 nm) from early to late spring until the harvest for20

the Mediterranean grassland of Amplero (Fig. 3a) (Balzarolo, 2008). This is a typical
trend for Mediterranean grasslands characterized by leaf senescence due to drought
conditions (Fava et al., 2007; Vescovo et al., 2012). For Monte Bondone and Neustift
(Fig. 3b–d), the reflectance in the green (540–580 nm) and NIR region increased and
decreased in the blue region with increasing LAI and phytomass.25

Figures 4–6 show correlograms between NSD-, SR- and SD-type indices, respec-
tively, and the investigated dependent CO2 flux metrics using a linear model. Figures 6,
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7 and 9 show the same analysis, but for the exponential model. Only 10 % of the band
combinations with the highest R2 values are shown for clarity, the unmasked correlo-
grams can be found in the Supplement. A number of interesting insights may be gained
from Figs. 4–9, and their counterparts shown in the Supplement, which we summarize
in the following:5

(i) The correlograms exhibited quite different patterns – some correlograms showed
that a wide range of band combinations was able to explain the simulated quan-
tities (e.g. α at Neustift; Fig. S1), while some correlograms exhibited pronounced
patterns, with the R2 value changing greatly with subtle changes in band combi-
nations (e.g. GPPmax at Neustift; Fig. S1).10

(ii) Maximum R2 values were often clearly higher than the surrounding areas of high
predictive power (e.g. ε at Amplero; Fig. 4).

(iii) The different types of indices (compare Figs. 4–6 or Figs. 5–7) yielded similarly
high correlations with the same dependent variable at the same site in similar
spectral regions, indicating that band selection is more important for explana-15

tory power than the mathematical formulation of the VI (i.e. ratio vs. difference,
with/without normalization). SR and NSD indices (Figs. 4 and 5 or Figs. 7 and 8)
yielded similar results compared to SD indices (Fig. 6 or Fig. 9).

(iv) Large differences existed between the study sites in the explanatory power of
the same index for the same dependent variable. The highest R2 values were20

generally obtained for Amplero, followed by Neustift and then Monte Bondone
and the lowest R2 values resulted when data from all three sites were pooled,
confirming the difficulties in finding a general relation valid among sites. Overall,
the maximum R2 values were significant for all individual sites and all sites pooled
for all dependent variables and the three types of indices. For all sites pooled,25

maximum R2 values ranged between 0.36–0.52 for the linear models (Figs. 4–6)
and between 0.40–0.59 for the exponential models (Figs. 7–9).
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(v) Across all sites and indices, the highest correlations were typically observed for
GPPmax, while the lowest correlations resulted for α and ε.

(vi) The highest correlations for all dependent variables were found either for indices
combining bands in the visible range (< 700 nm) or the red edge and NIR (>
700 nm), corresponding to spectral regions used by indices such as the SRPI,5

NPCI, PRI and NPQI and the CI and WI, respectively. Spectral regions of well-
known indices, such as NDVI, SR, EVI, SIPI or GRI, which exploit the contrasting
reflectance magnitudes in the visible and NIR (Fig. 3), resulted in comparably
lower correlations.

(vii) Generally, the exponential and linear regression models showed high correlations10

with the same dependent variable at the same site in similar spectral regions (e.g.
GPPmax at Neustift; Figs. 4 and 7). Large differences existed between exponen-
tial and linear model in explaining the variability of GPP and NEE for Amplero and
ε for Monte Bondone. Across all sites, exponential and linear regression model
showed similar R2 variability for all predicting variables except for ε and the expo-15

nential regression model showed the highest R2.

Figure 10 shows the differences between AIC obtained for the linear and exponential
models between NSD-type indices and midday average carbon fluxes, and ecophysio-
logical variables. The red area shows waveband combinations where the linear models
performed better than the exponential ones (i.e. AIC for linear model was smaller than20

AIC for exponential model), while the blue area represents the reverse. The same anal-
ysis was done also for the SR- and SD-type indices and the results can be found in the
Supplement (Figs. S10 and S11).

Figure 10 shows that the exponential model was superior to the linear model for pre-
dicting midday GPP, ε and NEE for Amplero and ε for Monte Bondone for all NSD-type25

indices. For the others variables and sites a clear distinction between the performance
of linear and exponential models could be observed. For example, the exponential
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model best explained GPPmax for Neustift in the water band combinations. Similar re-
sults were obtained for SR-type indices (Fig. S10). Large differences were also ob-
served for SD-type indices for ε at Neustift (Fig. S11).

Figures S12–S14 in the Supplement display the results of the AIC test for daily GPP,
ε and NEE and NSD-, SR- and SD-type indices. The AIC test showed the same results5

as for midday predictions for ε for all sites and indices. Large differences were apparent
for GPP and NEE for Amplero and for GPP for Neustift in the water band combinations.

3.3 Correlation between conventional VIs, ecophysiological variables and CO2

fluxes

The correlation analysis between the conventional VIs, the CO2 fluxes (Table 3) and10

ecophysiological parameters (Table 4), generally confirmed the results obtained with
the hyperspectral data.

For the same dependent variable (α, GPPmax, GPP, ε and NEE), the performance
of the various VIs showed wide differences between sites. For example, for GPPmax all
of the investigated indices except NPQI resulted in significant linear and exponential15

correlations at Amplero and Monte Bondone, explaining 30–93 % of the variability in
GPPmax. In contrast, only PRI, NPCI and SRPI showed a significant linear and expo-
nential performance (30–40 % explained variability) for GPPmax at Neustift.

The different VIs performed differently in predicting the same dependent variable at
the different study sites. For all dependent variables (Tables 3, 4 and S1), the VI result-20

ing in the highest R2 values was never the same at all sites. Often the best fitting VI at
one site resulted in a non-significant correlation at another site. Therefore, none of the
dependent variables clearly emerged as the one best predicted (Tables 3, 4 and S1).
The linear and exponential models generally correlated well for the same dependent
variables for the same site. The exponential model showed highest R2 values and the25

lowest RMSE values. Moreover, the exponential model showed the lowest AIC value.
When data from all sites were pooled, linear and exponential models showed the

same performance for the same VI and dependent variable except for GPP and NEE.
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The best performing VIs for GPP was PRI for the linear model and SIPI for the expo-
nential model; for NEE CI for the linear model and SIPI for the exponential model. NPQI
performed best for α, GRI for ε, SIPI for GPPmax.

The choice of the averaging period (midday vs. daily) applied to ε, NEE and GPP
did generally not modify the ranking of the VIs, but the R2 values tended to be similar5

or somewhat higher at the daily time scale (compare Tables 3 and 4 with Table S1).
Moreover, AIC values at the daily time scale tended to be lower than at the midday time
scale.

4 Discussion

This study aimed at evaluating the potential of hyperspectral reflectance measurements10

to simulate CO2 fluxes and ecophysiological variables of European mountain grass-
lands over a range of climatic conditions and management practices (grazing, harvest).
To this end, we combined eddy covariance CO2 flux measurements with ground-based
hyperspectral measurements at three mountain grassland sites in Europe.

The first main result of our study is that, despite focusing on a single type of ecosys-15

tem, large differences existed among the investigated sites in the relationships be-
tween hyperspectral reflectance data and CO2 fluxes and ecophysiological parame-
ters. As mentioned by Wohlfahrt et al. (2010), this indicates that site-specific factors
not taken into account in the present analysis apparently play a major role in shaping
the observed relationships (see also Soudani et al., 2014). For all study sites pooled,20

hyperspectral reflectance data explained 36–52 % of the variability in the dependent
variables for the linear models and 40–59 % for the exponential models. The con-
ventional VIs explained 26–32 % of the variability for the linear models and 29–48 %
for the exponential models. In addition, the exponential model performed better than
the linear model by showing generally lower AIC values. These findings challenge the25

current practice in up-scaling to larger regions by grouping all grasslands into a sin-
gle plant functional type (PFT). We advocate more studies to be conducted merging
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CO2 flux with hyperspectral data by means of models which use a more process-
oriented and coupled approach to simulating canopy CO2 exchange and reflectance
in order to explore the causes underlying the observed differences between seemingly
closely related study sites. These findings also suggest that waveband combinations
not exploited by presently used (conventional) VIs may offer potential for predicting5

grassland CO2 fluxes, which has implications for the design and capabilities of future
space/airborne or ground-based low cost sensors.

The second relevant result of this study is that the largest fraction of variability in CO2
fluxes and ecophysiological parameters was explained by band combinations in either
the visible region (which is sensitive to pigment absorption) or the NIR region (which10

is sensitive to canopy structure or water content; Vescovo et al., 2012). In the second
case, the correlograms clearly indicate that band combinations between 750 nm and
900 nm (i.e. NIR shoulder region) performed very well for predicting GPP and NEE
both for single sites and all sites pooled. In addition, for hyperspectral band combi-
nations including a band which is < 760 nm, the correlation was related to chlorophyll15

content (Hatfield at al., 2008; Clevers and Gitelson, 2013), while for band combina-
tions > 760 nm (e.g. 761 and 770, 761 and 850, 800 and 850, etc.) there was perhaps
a structural effect. These results indicate that the region of near-uniform reflectance
throughout the NIR shoulder in ecosystems characterized by strong dynamics can pro-
vide useful information on canopy structure and biophysical parameters related to pho-20

tosynthesis such as fAPAR and, thus, on GPP and NEE.
Over all sites, VIs related to chlorophyll content (e.g. CI and NPCI) (Table 2) emerged

as the VIs which explained the largest fraction of variability in most of the dependent
variables for the comparably well-watered sites Neustift and Monte Bondone. SR and
WI performed well for Amplero, a Mediterranean mountain grassland characterized by25

a pronounced summer drought (Tables 3 and 4). PRI showed the best performance in
predicting α for Amplero and midday GPP for all sites pooled. In addition PRI showed
good performance in predicting midday and daily ε for Amplero. VIs such as the NDVI
are related to changes in LAI and biomass (Gianelle et al., 2009; Vescovo et al., 2012),
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but are not able to track changes of the photosynthetic efficiency (with constant LAI)
over short time scales (e.g. a few days) (Soudani et al., 2014). The leaf water status
influences the photosynthetic efficiency (α and ε) and therefore reflectance at 970 nm,
related to leaf water content, and the related WI index may be a good proxy for these
parameters (Inoue et al., 2008). In addition, these indices are not sensitive to short5

term stresses, such as water stress (Gitelson et al., 2008).
The third result of this study is that hyperspectral data and VIs derived therefrom

were more successful in predicting GPPmax, derived from light response curves, as well
as midday and daily average GPP and NEE, while less of the variability was explained
in α and ε. This result is somewhat astonishing as variations in absorbed PAR are10

thought to present a major factor modulating GPP and NEE in mountain grasslands
(Wohlfahrt et al., 2008) and form the basis for the concept of light use efficiency (LUE)
models. However, this is the first study comparing different grasslands characterized by
different plant species and environmental conditions. The use of simple models based
on a linear relationship between GPP and VIs, related to canopy greenness, has proven15

be a good proxy for GPP of ecosystems with strong green-up and senescence (Peng
et al., 2011; Rossini et al., 2012). The loss of this relationship may be related to low LUE
variability due to abiotic and biotic stressors, the dependency of PRI on LAI, leaf and
canopy biochemical structure (e.g. leaf orientation), and xanthophyll cycle inhibition or
saturation and zeaxanthin-independent quenching (Gamon et al., 2001; Filella et al.,20

2004; Rahimzadeh-Bajgiran et al., 2012; Hmimina et al., 2014). For alpine grasslands,
a key meteorological variable that played a relevant role in stimulating LUE was high
soil water content associated with low temperatures (Polley et al., 2011). Low soil water
contents triggered a decrease in leaf conductance as well as in ε and in α also for two
oak and beech ecosystems (Hmimina et al., 2014). However, no significant differences25

in leaf biochemical and structural properties of the canopy at lowest and highest water
content were found. In addition, in this special issue, Sakowska et al. (2014) show that
ε is also strongly affected by the directional distribution of incident PAR, i.e. the ratio
of direct to diffuse PAR. Nevertheless, all these aspects are presently not considered
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in most LUE models. For instance, the MOD17 algorithm used for the MODIS GPP
product (Heinsch et al., 2006) is based on air temperature, vapor pressure deficit, PAR
and fAPAR.

5 Conclusions

The present study focused on understanding the potential of hyperspectral VIs in pre-5

dicting grassland CO2 exchange and ecophysiological parameters (α, ε and GPPmax)
for different European mountain grasslands.

The major finding of this study is that the relationship between ground-based hyper-
spectral reflectance and the ecosystem-scale CO2 exchange of mountain grasslands
is much more variable than what might be supposed given this closely related group of10

structurally and functionally similar ecosystems. As a consequence, the unique models
of mountain grassland CO2 exchange, i.e. the best fitting models for all sites pooled,
explained < 30 % and < 50 % of the variability in the independent variables when estab-
lished VIs and optimized hyperspectral VIs, respectively, were used. Interestingly, VIs
based on reflectance either in the visible or NIR part of the electromagnetic spectrum15

were superior in predicting mountain grassland CO2 exchange and ecophysiological
parameters compared to commonly used VIs which are based on a combination of
these two wavebands. Although the hyperspectral sensors give the possibility to use
full spectral information and to compute any desired VIs, their cost is still high. There-
fore, at the eddy covariance with a limited budget we suggest to use at least dual or20

four channels low cost sensors in the the following spectral regions: 400–420 nm; 500–
530 nm; 750–770 nm; 780–800 nm and 880–900 nm.

The take-home message from this study thus is that continuing efforts are required to
better understand differences in the relationship between ecosystem-scale reflectance
and CO2 exchange and to improve models of this relationship which can be employed25

to up-scale the land CO2 exchange to larger spatial scales based on optical remote
sensing data. Initiatives such as SpecNet (http://specnet.info; Gamon et al., 2006),
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the COST Action ES0903 (EUROSPEC; http://cost-es0903.fem-environment.eu/) and
the COST Action ES1309 (OPTIMISE; http://www.cost.eu/domains_actions/essem/
Actions/ES1309) are instrumental to this end as they provided the scale-consistent
combination of hyperspectral reflectance and CO2 exchange data.

The Supplement related to this article is available online at5

doi:10.5194/bgd-11-10323-2014-supplement.
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Table 1. Description of the study sites and period.

Site characteristics Amplero Neustift Monte Bondone
(IT-Amp) (AT-Neu) (IT-MBo)

Latitude 41.9041 47.1162 46.0296
Longitude 13.6052 11.3204 11.0829
Elevation (m) 884 970 1550
Mean annual temperature (◦C) 10.0 6.5 5.5
Mean annual precipitation (mm) 1365 852 1189
Vegetation type Seslerietum apenninae Pastinaco – Arrhenatheretum Nardetum Alpigenum
Study period1 111–170, 2006 (9) 122–303, 2006 (16) 129–201, 2005 (13)

124–192, 2006 (12)

1 from-to DOY, year (number of hyperspectral measurement dates)
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Table 2. Summary of the vegetation indices characteristics used in this study.

Index name and acronym Formula Use Reference

Simple Spectral Ratio Indices
Simple Ratio
(SR or RVI)

SR = R830/R660 Greenness Jordan (1969)

Green Ratio Index
(GRI)

GRI= R830/R550 Greenness Peñuelas and Filella (1998)

Water Index (WI) WI= R900/R970 Water content, leaf water poten-
tial, canopy water content

Peñuelas et al. (1993)

Simple Ratio Pigment
Index (SRPI)

SRPI= (R430)/(R680) Peñuelas et al. (1995)

Normalized Spectral Difference Vegetation Indices
Normalized Difference
Vegetation Index (NDVI)

NDVI= (R830 −R660)/(R830 +R660) Greenness Rouse et al. (1973)

Normalized Phaeophytinization
Index (NPQI)

NPQI= (R415 −R435)/(R415 +R435) Carotenoid/Chlorophyll ratio Barnes et al. (1992)

Normalized Pigment
Chlorophyll Index (NPCI)

NPCI= (R680 −R430)/(R680 +R430) Chlorophyll ratio Peñuelas et al. (1994)

Chlorophyll Index (CI) CI= (R750 −R705)/(R750 +R705) Chlorophyll content Gitelson and Merzlyak (1997)
Structural Independent
Pigment Index (SIPI)

SIPI= (R800 −R445)/(R800 +R445) Chlorophyll content Peñuelas et al. (1995)

Photochemical Reflectance
Index (PRI)

PRI= (R531 −R570)/(R531 +R570) Photosynthetic light use efficiency
(and leaf pigment contents)

Gamon et al. (1992)

Improved for soil and atmospheric effects
Enhanced Vegetation
Index (EVI)

EVI= 2.5(R830 −R660)/(1+R830 +6R660 −7.5R460) Vegetation Index improved for soil
and atmospheric effects

Huete et al. (1997)
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Table 3. Results of statistic of linear and exponential regression models between VIs and eco-
physiological parameters: α, ε (midday average) and GPPmax. R2 – Coefficient of determi-
nation; RMSE – Root Mean Square Error; and AIC – Akaike information criterion. Bold letters
indicate the best model between linear and exponential models. Italic letters highlight the model
with the lowest AIC.

α ε
Amplero Neustift Monte Bondone All Amplero Neustift Monte Bondone All

R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC

VI –
µmolCO2

µmolphot
– –

µmolCO2

µmolphot
– –

µmolCO2

µmolphot
– –

µmolCO2

µmolphot
– –

µmolCO2

µmolphot
– –

µmolCO2

µmolphot
– –

µmolCO2

µmolphot
– –

µmolCO2

µmolphot
–

Linear model
SR 0.7 0.0 −72 0.0 0.1 −35 0.3 0.0 −160 0.0 0.1 −156 0.6 0.0 −61 0.3 0.0 −54 0.3 0.0 −86 0.2 0.0 −186
GRI 0.5 0.0 −67 0.0 0.1 −35 0.2 0.0 −157 0.0 0.1 −157 0.3 0.0 −57 0.5 0.0 −59 0.5 0.0 −90 0.5 0.0 −196
WI 0.7 0.0 −71 0.3 0.1 −40 0.2 0.0 −155 0.0 0.1 −157 0.5 0.0 −60 0.2 0.0 −52 0.3 0.0 −86 0.2 0.0 −187
NDVI 0.7 0.0 −73 0.0 0.1 −35 0.3 0.0 −161 0.0 0.1 −157 0.4 0.0 −58 0.4 0.0 −55 0.6 0.0 −96 0.4 0.0 −194
SIPI 0.7 0.0 −73 0.0 0.1 −36 0.3 0.0 −160 0.1 0.1 −159 0.3 0.0 −56 0.3 0.0 −54 0.7 0.0 −103 0.4 0.0 −193
CI 0.7 0.0 −73 0.0 0.1 −35 0.3 0.0 −161 0.0 0.1 −156 0.4 0.0 −58 0.4 0.0 −56 0.5 0.0 −92 0.4 0.0 −192
PRI 0.8 0.0 −76 0.0 0.1 −36 0.3 0.0 −159 0.2 0.0 −170 0.6 0.0 −61 0.1 0.0 −49 0.0 0.1 −76 0.0 0.0 −176
EVI 0.8 0.0 −75 0.0 0.1 −35 0.3 0.0 −159 0.0 0.1 −157 0.4 0.0 −58 0.4 0.0 −56 0.5 0.0 −94 0.4 0.0 −192
NPQI 0.4 0.0 −66 0.4 0.1 −43 0.0 0.0 −151 0.4 0.0 −177 0.0 0.0 −53 0.0 0.1 −48 0.3 0.0 −83 0.1 0.0 −183
NPCI 0.7 0.0 −72 0.1 0.1 −36 0.3 0.0 −158 0.3 0.0 −175 0.3 0.0 −56 0.2 0.0 −51 0.0 0.1 −76 0.0 0.0 −176
SRPI 0.6 0.0 −71 0.1 0.1 −36 0.3 0.0 −158 0.3 0.0 −176 0.2 0.0 −56 0.2 0.0 −51 0.0 0.1 −76 0.0 0.0 −176
Exponential model
SR 0.7 0.0 −71 0.0 0.1 −35 0.3 0.0 −159 0.0 0.1 −156 0.8 0.0 −68 0.4 0.0 −55 0.5 0.0 −91 0.2 0.0 −189
GRI 0.5 0.0 −67 0.0 0.1 −35 0.2 0.0 −157 0.0 0.1 −157 0.3 0.0 −57 0.5 0.0 −58 0.6 0.0 −97 0.5 0.0 −211
WI 0.6 0.0 −70 0.2 0.1 −40 0.2 0.0 −155 0.0 0.1 −157 0.6 0.0 −61 0.2 0.0 −50 0.5 0.0 −93 0.2 0.0 −191
NDVI 0.7 0.0 −73 0.0 0.1 −35 0.3 0.0 −161 0.0 0.1 −157 0.7 0.0 −64 0.3 0.0 −54 0.7 0.0 −107 0.4 0.0 −205
SIPI 0.8 0.0 −75 0.0 0.1 −36 0.3 0.0 −161 0.1 0.1 −160 0.5 0.0 −59 0.3 0.0 −53 0.8 0.0 −114 0.4 0.0 −203
CI 0.7 0.0 −72 0.0 0.1 −35 0.3 0.0 −161 0.0 0.1 −156 0.6 0.0 −62 0.4 0.0 −55 0.7 0.0 −103 0.4 0.0 −201
PRI 0.8 0.0 −74 0.0 0.1 −36 0.3 0.0 −159 0.2 0.0 −170 0.8 0.0 −67 0.1 0.0 −50 0.0 0.1 −76 0.0 0.0 −176
EVI 0.8 0.0 −76 0.0 0.1 −35 0.3 0.0 −159 0.0 0.1 −157 0.6 0.0 −62 0.4 0.0 −56 0.7 0.0 −103 0.4 0.0 −200
NPQI 0.3 0.0 −65 0.4 0.1 −43 0.0 0.0 −151 0.4 0.0 −184 0.0 0.0 −53 0.0 0.1 −48 0.4 0.0 −88 0.1 0.0 −182
NPCI 0.6 0.0 −70 0.1 0.1 −36 0.3 0.0 −158 0.3 0.0 −176 0.2 0.0 −56 0.2 0.0 −52 0.0 0.1 −76 0.0 0.0 −176
SRPI 0.5 0.0 −68 0.1 0.1 −36 0.3 0.0 −158 0.3 0.0 −175 0.2 0.0 −56 0.2 0.0 −52 0.0 0.1 −76 0.0 0.0 −176
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Table 3. Continued.

GPPmax
Amplero Neustift Monte Bondone All
R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC

VI –
µmolCO2

m2s
– –

µmolCO2

m2s
– –

µmolCO2

m2s
– –

µmolCO2

m2s
–

Linear model
SR 0.9 1.1 30 0.1 7.3 111 0.4 4.8 151 0.2 6.5 356
GRI 0.8 2.0 40 0.1 7.1 110 0.3 5.2 155 0.1 6.9 364
WI 0.9 1.4 34 0.0 7.6 112 0.3 5.2 155 0.1 7.0 364
NDVI 0.9 1.4 33 0.1 7.0 110 0.4 4.7 150 0.2 6.3 354
SIPI 0.8 1.9 39 0.2 6.6 108 0.4 4.6 149 0.3 6.1 351
CI 0.9 1.5 35 0.2 6.8 109 0.5 4.5 148 0.2 6.4 354
PRI 0.8 2.0 40 0.3 6.3 106 0.3 5.3 156 0.2 6.4 354
EVI 0.9 1.4 33 0.1 7.2 111 0.4 4.7 151 0.2 6.6 357
NPQI 0.3 3.8 51 0.2 6.9 109 0.1 5.9 162 0.0 7.2 368
NPCI 0.6 2.8 46 0.4 6.1 105 0.3 5.2 155 0.2 6.5 355
SRPI 0.6 2.9 47 0.3 6.2 106 0.3 5.2 155 0.2 6.6 357
Exponential model
SR 0.9 1.5 34 0.1 7.3 111 0.4 4.9 152 0.2 6.5 358
GRI 0.7 2.3 43 0.1 7.2 110 0.3 5.3 156 0.1 6.9 364
WI 0.8 1.8 38 0.0 7.6 112 0.3 5.3 157 0.1 7.0 365
NDVI 0.9 1.2 31 0.1 7.1 110 0.4 4.7 150 0.2 6.3 354
SIPI 0.9 1.7 37 0.2 6.7 108 0.5 4.5 148 0.3 6.1 350
CI 0.9 1.5 35 0.2 6.9 109 0.5 4.5 148 0.2 6.4 356
PRI 0.8 2.0 40 0.3 6.5 107 0.3 5.3 156 0.2 6.4 356
EVI 0.9 1.2 31 0.1 7.3 111 0.4 4.8 152 0.2 6.6 359
NPQI 0.2 3.9 52 0.1 7.1 110 0.1 5.9 162 0.0 7.2 368
NPCI 0.5 3.2 48 0.3 6.4 107 0.3 5.3 156 0.2 6.5 357
SRPI 0.4 3.4 49 0.3 6.5 108 0.3 5.3 157 0.2 6.6 359
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Table 4. Results of statistic of linear and exponential regression models between VIs and mid-
day average CO2 fluxes: NEE and GPP. R2 – Coefficient of determination; RMSE – Root Mean
Square Error; and AIC – Akaike information criterion. Bold letters indicate the best model be-
tween linear and exponential models. Italic letters highlight the model with the lowest AIC.

GPP
Amplero Neustift Monte Bondone All

R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC

VI –
µmolCO2

m2s
– –

µmolCO2

m2s
– –

µmolCO2

m2s
– –

µmolCO2

m2s
–

Linear model
SR 0.6 2.8 46 0.2 9.0 118 0.5 4.4 147 0.2 7.2 368
GRI 0.5 3.0 48 0.2 8.9 117 0.5 4.5 148 0.1 7.9 377
WI 0.7 2.4 43 0.1 9.3 119 0.4 4.9 153 0.1 7.6 374
NDVI 0.5 3.2 49 0.2 9.0 118 0.5 4.4 146 0.2 7.1 367
SIPI 0.3 3.7 51 0.2 8.8 117 0.5 4.5 148 0.3 6.7 365
CI 0.5 3.1 48 0.3 8.4 116 0.6 4.1 144 0.2 7.2 367
PRI 0.4 3.5 50 0.3 8.2 115 0.2 5.4 157 0.3 6.8 361
EVI 0.4 3.4 50 0.2 8.9 117 0.5 4.4 147 0.2 7.1 367
NPQI 0.1 4.4 54 0.1 9.3 119 0.1 5.7 160 0.1 7.8 377
NPCI 0.1 4.3 54 0.4 8.0 114 0.2 5.4 157 0.3 6.9 362
SRPI 0.1 4.4 54 0.4 8.0 114 0.2 5.4 157 0.3 7.0 363
Exponential model
SR 0.7 2.5 44 0.1 9.0 118 0.5 4.5 149 0.2 7.2 369
GRI 0.6 2.9 47 0.2 8.9 117 0.4 4.6 149 0.1 7.9 378
WI 0.8 1.9 40 0.0 9.4 119 0.3 5.1 154 0.1 7.6 375
NDVI 0.6 3.0 47 0.2 9.0 118 0.5 4.3 146 0.2 7.1 366
SIPI 0.4 3.6 51 0.2 8.7 117 0.5 4.2 145 0.3 6.7 361
CI 0.6 3.0 47 0.3 8.4 116 0.6 4.0 142 0.2 7.2 369
PRI 0.4 3.5 50 0.3 8.1 114 0.2 5.4 157 0.3 6.8 362
EVI 0.4 3.4 49 0.2 9.0 118 0.5 4.5 148 0.2 7.1 367
NPQI 0.1 4.4 54 0.1 9.4 119 0.1 5.8 161 0.1 7.8 377
NPCI 0.1 4.3 54 0.4 8.1 115 0.2 5.4 158 0.3 6.9 364
SRPI 0.0 4.4 54 0.3 8.3 115 0.2 5.4 158 0.3 7.0 365
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Table 4. Continued.

NEE
Amplero Neustift Monte Bondone All

R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC

VI –
µmolCO2

m2s
– –

µmolCO2

m2s
– –

µmolCO2

m2s
– –

µmolCO2

m2s
–

Linear model
SR 0.7 2.4 43 0.2 8.2 115 0.4 4.2 145 0.2 6.2 352
GRI 0.7 2.5 44 0.2 8.1 114 0.4 4.4 147 0.1 6.7 360
WI 0.8 1.9 39 0.1 8.7 117 0.3 4.6 150 0.1 6.6 358
NDVI 0.6 2.8 46 0.2 8.1 114 0.4 4.2 145 0.3 6.1 351
SIPI 0.4 3.3 49 0.2 7.8 113 0.4 4.2 145 0.3 5.9 350
CI 0.6 2.7 46 0.3 7.6 112 0.5 3.9 141 0.2 6.2 350
PRI 0.5 3.3 49 0.3 7.4 112 0.2 5.1 154 0.2 6.3 354
EVI 0.5 3.1 48 0.2 8.1 114 0.4 4.2 145 0.2 6.3 353
NPQI 0.1 4.3 54 0.1 8.3 115 0.1 5.3 156 0.0 7.0 365
NPCI 0.2 4.1 53 0.4 6.8 109 0.3 4.8 152 0.2 6.3 353
SRPI 0.1 4.2 53 0.4 6.9 109 0.3 4.8 152 0.2 6.4 354
Exponential model
SR 0.8 2.0 40 0.1 8.2 115 0.4 4.3 146 0.2 6.2 353
GRI 0.7 2.3 43 0.2 8.2 115 0.4 4.5 148 0.1 6.7 361
WI 0.9 1.6 36 0.0 8.7 117 0.3 4.8 151 0.1 6.6 359
NDVI 0.7 2.5 44 0.2 8.1 114 0.5 4.2 144 0.3 6.1 351
SIPI 0.5 3.3 49 0.2 7.7 113 0.5 4.0 142 0.3 5.9 348
CI 0.7 2.4 44 0.3 7.6 112 0.5 3.8 140 0.2 6.2 352
PRI 0.5 3.3 49 0.3 7.4 112 0.2 5.1 154 0.2 6.3 355
EVI 0.5 3.0 48 0.2 8.2 115 0.4 4.2 145 0.2 6.3 354
NPQI 0.1 4.3 54 0.1 8.5 116 0.1 5.3 156 0.0 7.0 365
NPCI 0.1 4.2 53 0.4 7.2 111 0.3 4.8 152 0.2 6.3 355
SRPI 0.1 4.3 54 0.3 7.3 111 0.3 4.9 152 0.2 6.4 355
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Figure 1. A selected example of a correlogram between NSD-type indices and midday average GPP for all sites pooled. Plot in (a) shows all R
2
 

values (unmasked), the asterisk symbol indicates the two-band combination with the highest R
2
 value and the dots indicate the location of the 

reference VIs reported in Table 2. Plot in (b) is the same as in (a) but shows only the highest 10% of the R
2
 values with all other values masked.  

 

Figure 1. A selected example of a correlogram between NSD-type indices and midday aver-
age GPP for all sites pooled. Plot in (a) shows all R2 values (unmasked), the asterisk symbol
indicates the two-band combination with the highest R2 value and the dots indicate the location
of the reference VIs reported in Table 2. Plot in (b) is the same as in (a) but shows only the
highest 10 % of the R2 values with all other values masked.
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 Figure 2. Seasonal variation of meteorological variables, LAI, CO2 fluxes and ecophysiological
parameters for the period of the hyperspectral measurements at the three investigated grass-
lands. (a) Midday average photosynthetically active radiation (PAR; µmol m−2 s−1; solid black
line) and daily average air temperature (◦C; dotted grey line); (b) daily precipitation (Rain; mm;
solid black line) and daily average soil water content (SWC; m3 m−3; dotted grey line); (c) Leaf
Area Index (LAI; m2 m−2; solid black line) and light use efficiency (ε; µmol photons µmol CO−1

2 ;
dotted grey line); (d) apparent quantum yield (α; µmol CO2 µmol photons−1; solid black line)
and gross primary production at saturating light (GPPmax; µmol m−2 s−1; dotted grey line); (e)
midday average net ecosystem CO2 exchange (NEE; µmol m−2 s−1; solid black line) and gross
primary production (GPP; µmol m−2 s−1; grey dotted line); vertical lines in the lowermost panels
indicate the dates of mowing.
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45 

 1 

Figure 3. Selected grassland spectral signatures during the growing seasons. The figure legends indicates the corresponding leaf area index 2 

(LAI; m2 m
-2

) and the day of year (in parenthesis).  3 

Figure 3. Selected grassland spectral signatures during the growing seasons. The figure leg-
ends indicates the corresponding leaf area index (LAI; m2 m−2) and the day of year (in paren-
thesis).
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 1 

Figure 4. Correlograms of the highest 10% of the R
2
 values for , GPPmax and midday averaged GPP,  and NEE and NSD-type indices for 2 

Amplero, Neustift, Monte Bondone (both study years pooled) and all sites pooled for the linear model. The asterisks indicate the position of 3 

paired band combinations corresponding to the maximum R
2
. The unmasked correlograms are shown in the Supplementary Material (Fig. S1). 4 

Figure 4. Correlograms of the highest 10 % of the R2 values for α, GPPmax and midday aver-
aged GPP, ε and NEE and NSD-type indices for Amplero, Neustift, Monte Bondone (both study
years pooled) and all sites pooled for the linear model. The asterisks indicate the position of
paired band combinations corresponding to the maximum R2. The unmasked correlograms are
shown in the Supplement (Fig. S1).
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Figure 5. Correlograms of the highest 10% of the R
2
 values for , GPPmax and midday averaged GPP,  and NEE and SR-type indices for 2 

Amplero, Neustift, Monte Bondone (both study years pooled) and all sites pooled for the linear model. The asterisks indicate the position of 3 

paired band combinations corresponding to the maximum R
2
. The unmasked correlograms are shown in the Supplementary Material (Fig. S2). 4 

Figure 5. Correlograms of the highest 10 % of the R2 values for α, GPPmax and midday aver-
aged GPP, ε and NEE and SR-type indices for Amplero, Neustift, Monte Bondone (both study
years pooled) and all sites pooled for the linear model. The asterisks indicate the position of
paired band combinations corresponding to the maximum R2. The unmasked correlograms are
shown in the Supplement (Fig. S2).
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Figure 6. Correlograms of the highest 10% of the R
2
 values for , GPPmax and midday averaged GPP,  and NEE and SD-type indices for 2 

Amplero, Neustift, Monte Bondone (both study years pooled) and all sites pooled for the linear model. The asterisks indicate the position of 3 

paired band combinations corresponding to the maximum R
2
. The unmasked correlograms are shown in the Supplementary Material (Fig. S3). 4 

 5 

Figure 6. Correlograms of the highest 10 % of the R2 values for α, GPPmax and midday aver-
aged GPP, ε and NEE and SD-type indices for Amplero, Neustift, Monte Bondone (both study
years pooled) and all sites pooled for the linear model. The asterisks indicate the position of
paired band combinations corresponding to the maximum R2. The unmasked correlograms are
shown in the Supplement (Fig. S3).
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Figure 7. Correlograms of the highest 10% of the R
2
 values for , GPPmax and midday averaged GPP,  and NEE and NSD-type indices for 2 

Amplero, Neustift, Monte Bondone (both study years pooled) and all sites pooled for the exponential model. The asterisks indicate the 3 

position of paired band combinations corresponding to the maximum R
2
. The unmasked correlograms are shown in the Supplementary 4 

Material (Fig. S7). 5 

Figure 7. Correlograms of the highest 10 % of the R2 values for α, GPPmax and midday aver-
aged GPP, ε and NEE and NSD-type indices for Amplero, Neustift, Monte Bondone (both study
years pooled) and all sites pooled for the exponential model. The asterisks indicate the position
of paired band combinations corresponding to the maximum R2. The unmasked correlograms
are shown in the Supplement (Fig. S7).
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Figure 8. Correlograms of the highest 10% of the R
2
 values for , GPPmax and midday averaged GPP,  and NEE and SR-type indices for 2 

Amplero, Neustift, Monte Bondone (both study years pooled) and all sites pooled for the exponential model. The asterisks indicate the 3 

position of paired band combinations corresponding to maximum R
2
. The unmasked correlograms are shown in the Supplementary Material 4 

(Fig. S8). 5 

Figure 8. Correlograms of the highest 10 % of the R2 values for α, GPPmax and midday aver-
aged GPP, ε and NEE and SR-type indices for Amplero, Neustift, Monte Bondone (both study
years pooled) and all sites pooled for the exponential model. The asterisks indicate the position
of paired band combinations corresponding to maximum R2. The unmasked correlograms are
shown in the Supplement (Fig. S8).
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Figure 9. Correlograms of the highest 10% of the R
2
 values for , GPPmax and midday averaged GPP,  and NEE and SD-type indices for 2 

Amplero, Neustift, Monte Bondone (both study years pooled) and all sites pooled for the exponential model. The asterisks indicate the 3 

position of paired band combinations corresponding to maximum R
2
. The unmasked correlograms are shown in the Supplementary Material 4 

(Fig. S9). 5 

Figure 9. Correlograms of the highest 10 % of the R2 values for α, GPPmax and midday aver-
aged GPP, ε and NEE and SD-type indices for Amplero, Neustift, Monte Bondone (both study
years pooled) and all sites pooled for the exponential model. The asterisks indicate the position
of paired band combinations corresponding to maximum R2. The unmasked correlograms are
shown in the Supplement (Fig. S9).
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Figure 10. Correlograms of the differences between AIC (Akaike information criterion) obtained for linear and exponential models for , 2 

GPPmax and midday averaged GPP,  and NEE and NSD-type indices for Amplero, Neustift, Monte Bondone (both study years pooled) and all 3 

sites pooled. Red areas indicate waveband combinations where the linear model performed better than exponential one, while blue areas 4 

indicate the reverse. 5 

Figure 10. Correlograms of the differences between AIC (Akaike information criterion) obtained
for linear and exponential models for α, GPPmax and midday averaged GPP, ε and NEE and
NSD-type indices for Amplero, Neustift, Monte Bondone (both study years pooled) and all sites
pooled. Red areas indicate waveband combinations where the linear model performed better
than exponential one, while blue areas indicate the reverse.
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